The course develops a fundamental understanding of the role of mathematical modeling in bridging theoretical, methodological, and empirical knowledge in the fields of mathematics, modeling, and simulation. By using examples and case studies from various field in mathematics, engineering, physics, geography, biology, ecology, computational sciences, and other fields will enable a deeper understanding of applications of mathematical modeling in many scientific fields and in interpreting and explaining phenomena and the emergence of complex interactions in real-world settings.
Finally, the course provides the students with a useful and unique skill set, knowledge and understanding of mathematical modeling and simulation in the context and across multiple scientific domains. It is aimed to be an enjoyable yet pedagogical tool for science-technology integration.
The overall goal of the course is to expose students to the basic principles of mathematical modeling along with a set of rudimental skills and competencies on performing mathematical modeling and simulation. It especially emphasizes the role of mathematical modeling and simulation in advancing fundamental human scientific knowledge, aiding social and technological evolution, and addressing critical global, regional, national and local problems and challenges. The specific aims and objectives of the course are summarized below: